The c-function expansion of a basic hypergeometric function associated to root systems
نویسنده
چکیده
We derive an explicit c-function expansion of a basic hypergeometric function associated to root systems. The basic hypergeometric function in question was constructed as explicit series expansion in symmetric Macdonald polynomials by Cherednik in case the associated twisted affine root system is reduced. Its construction was extended to the nonreduced case by the author. It is a meromorphic Weyl group invariant solution of the spectral problem of the Macdonald q-difference operators. The c-function expansion is its explicit expansion in terms of the basis of the space of meromorphic solutions of the spectral problem consisting of q-analogs of the Harish-Chandra series. We express the expansion coefficients in terms of a q-analog of the Harish-Chandra c-function, which is explicitly given as product of q-Gamma functions. The c-function expansion shows that the basic hypergeometric function formally is a q-analog of the Heckman-Opdam hypergeometric function, which in turn specializes to elementary spherical functions on noncompact Riemannian symmetric spaces for special values of the parameters.
منابع مشابه
A Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS
The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...
متن کاملAsymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications
A series expansion for Heckman-Opdam hypergeometric functions φλ is obtained for all λ ∈ a∗ C . As a consequence, estimates for φλ away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the no...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملA NONTERMINATING 8φ7 SUMMATION FOR THE ROOT System Cr
where aq = bcdef (cf. [9, Eq. (2.11.7)]), is one of the deepest results in the classical theory of basic hypergeometric series. It contains many important identities as special cases (such as the nonterminating 3φ2 summation, the terminating 8φ7 summation, and all their specializations including the q-binomial theorem). One way to derive (1.1) is to start with a particular rational function ide...
متن کامل